Discovering Convolutive Speech Phones Using Sparseness and Non-negativity
نویسندگان
چکیده
Abstract Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF). Here, we present a convolutive NMF algorithm that includes a sparseness constraint on the activations and has multiplicative updates. In combination with a spectral magnitude transform of speech, this method discovers speech phones that exhibit sparse activation patterns, which we use in a supervised separation scheme for monophonic mixtures.
منابع مشابه
Discovering Convolutive Speech Phones using Sparseness and Non-Negativity Constraints
Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can be constructed by Nonnegative Matrix Factorisation (NMF), which is a method for finding parts-based representations of non-negative data. Here, we present an extension to convolutive NMF that includes a sparseness cons...
متن کاملDiscovering speech phones using convolutive non-negative matrix factorisation with a sparseness constraint
Discovering a representation that allows auditory data to be parsimoniously represented is useful for many machine learning and signal processing tasks. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF), a method for finding parts-based representations of non-negative data. Here, we present an extension to convolutive NMF that includes a sparseness constraint, ...
متن کاملConvolutive Non-negative Matrix Factorisation with Sparseness Constraint
Discovering a parsimonious representation that reflects the structure of audio is a requirement of many machine learning and signal processing methods. Such a representation can be constructed by Non-negative Matrix Factorisation (NMF), which is a method for finding parts-based representations of non-negative data. We present an extension to NMF that is convolutive and forces a sparseness const...
متن کاملAutomatic Data-Driven Learning of Articulatory Primitives from Real-Time MRI Data Using Convolutive NMF with Sparseness Constraints
We present a procedure to automatically derive interpretable dynamic articulatory primitives in a data-driven manner from image sequences acquired through real-time magnetic resonance imaging (rt-MRI). More specifically, we propose a convolutive Nonnegative Matrix Factorization algorithm with sparseness constraints (cNMFsc) to decompose a given set of image sequences into a set of basis image s...
متن کاملConvolutive Sparse Coding of Audio Spectrograms
where sn,t is the amount of contribution of the n basis function in the t observation. There are methods which use fixed basis functions, but recently, many algorithms for the estimation of adaptive representations have been proposed, and they have been successfully used in several applications. For example, independent component analysis (ICA) estimates the basis functions by finding a decompo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007